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Abstract—Artificial intelligence is enjoying an ex-
tended renaissance due to numerous successes of ma-
chine learning in many application areas. However,
developing effective machine learning techniques is
insufficient: one must also build and maintain machine
learning systems that use these techniques in order to
solve real business problems. These machine learning
systems are necessarily complex and present myriad
engineering challenges. We introduce the intelligent
applications concept, which characterizes the structure
and responsibilities of contemporary machine learning
systems. Finally, we argue that Kubernetes is well-
suited to taming the complexity of machine learning
systems for the same reasons it has tamed the complex-
ity of conventional distributed applications: declarative
deployments, improved observability, and a single man-
agement interface for all application components.

Index Terms—Artificial Intelligence, machine learn-
ing, distributed applications.

I. INTRODUCTION

In order to solve a problem with machine learning,
practitioners engage in several discovery tasks: they
must formalize a measure of success; they must identify,
clean, and label a set of training examples; they must
devise a technique for extracting structure from the
data; they must train a model to exploit that structure;
and they must validate that the model has generalized
beyond its training data by testing its performance
on novel data. The output of this human discovery
process is a trained model, but it is also the artifacts
of the intermediate steps: a collection of cleaned
example data, some techniques for turning this data
into machine-readable features, and a technique for
turning machine-readable features into a trained
model. The discovery process is often realized
manually as a collection of ad-hoc transformations,
which harms repeatability.

In some cases, “production” is trivial since the
model is never actually executed in production.
Insights from models might be incorporated into real
systems – for example, arranging a physical retail
store so that items that are commonly purchased

together occupy nearby shelves. However, machine
learning is increasingly used to support essential
functionality in software systems, like support-
ing commerce with personalized recommendations,
evaluating payments transactions for probable fraud,
or automatically managing a portfolio of securities.

In order to support the dynamic demands of
software systems, we must not only publish models
as production services but we must also build
services to reproduce the data pipeline, feature
extraction approach, and model training processes.
Ideally the training steps will be deployed as a pro-
duction pipeline – which takes cleaned data, extracts
features, and trains a model – and the model itself
will be deployed as a scoring pipeline, which takes
raw data, extracts features, and makes predictions.
Once the model is in production, the performance of
the whole system must be continuously monitored
– since production pipelines are often distributed
systems and machine learning models are black
boxes, their behavior can fail in many places and
in nonobvious ways.

Figure 1 illustrates these discovery and produc-
tion phases of a typical practitioner’s workflow,
showing back edges where a practitioner may need
to revisit an earlier task. Since this workflow is
necessarily iterative and can involve orchestrating
numerous steps in a controlled environment, it
can benefit from automation. In both respects,
the machine learning workflow is analogous to
a conventional software development workflow,
and the same sorts of tools and infrastructure that
have made it possible for developers to build and
maintain increasingly complicated conventional ap-
plications can be adapted to serve the requirements
of machine learning workflows and systems.

This paper will review the challenges involved in
building and maintaining machine learning systems,
introduce the intelligent applications concept as a
model for contemporary machine learning systems,
and show how open-source community projects
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Fig. 1. A typical machine learning practitioner’s workflow,
showing both discovery and production tasks.

(including the Kubernetes resource manager and its
ecosystem) can and do support intelligent applica-
tions and machine learning workloads in practice.

II. MACHINE LEARNING SYSTEMS

Machine learning techniques – that is, the feature
engineering approach and feature extraction code,
the actual optimization code that trains a model, and
the inference code that uses it to make predictions –
are important, but it is complex software systems
that solve real problems. Machine learning systems
incorporate, at a minimum, both training and infer-
ence pipelines and are thus multi-component and
(often-)distributed systems that must deal with pro-
cessed data from many sources and raw data from
potentially-uncooperative users. As a consequence,
machine learning systems feature many engineering
challenges that are familiar to developers of complex
applications, including:

• modules must be tested in isolation and the
system must also be tested as a whole;

• application components must be built from
source code, deployed, and orchestrated;

• it must be possible to upgrade individual
components of the system without downtime;

• data formats, schemas, and ranges may change
in ways that may violate the expectations of
the code that consumes it; and

• the overall system must behave appropriately
even in the face of hostile input.

Some challenges faced by conventional applica-
tions are more pronounced in machine learning
systems: for example, configuring and orchestrating
experiments and training pipelines is analogous to
configuring and orchestrating conventional build
pipelines, but the impact of a machine learning

pipeline’s configuration can be dramatic on the
overall performance of a machine learning system.
Making pipelines repeatable is an important goal:
Nelson et al. (2011) describe the OURMINE environ-
ment for documenting and repeatably orchestrating
polyglot pipelines, Buitinck et al. (2013) describe
the pipelines API provided by Scikit-Learn (Pe-
dregosa et al., 2011), which is suitable for pipelines
developed in the Python language, and the Apache
Spark system (Zaharia et al., 2016) provides an
API for defining repeatable pipelines with relational
queries, feature extraction, and model training steps.

However, other challenges are more insidious.
For example, while conventional software often
fails in obvious ways, machine learning systems
may fail more subtly: a misbehaving model, for
example, may continue to happily make predictions,
but these will be wrong more than we’d like. Sculley
et al. (2015) argue that machine learning techniques
are relatively easy to develop but that machine
learning systems are relatively difficult to maintain,
and that machine learning systems often exhibit bad
engineering properties due to the consequences of
new challenges like:

• concept drift and other similar phenomena, in
which relationships between inputs and outputs
from training no longer hold in production,
leading to decreased model performance;1

• unexpected changes to input data quality or
pipeline correctness may have far-reaching ef-
fects in systems that depend on the quality of
input data for the quality of trained models;
and

• developing, managing, and monitoring the inte-
gration code that connects different components
is tedious and error-prone.

III. INTELLIGENT APPLICATIONS

Machine learning techniques, like business an-
alytics and classical statistics, can provide value
even without being incorporated directly into a
software system: a monthly demand forecast can
help a hospital schedule staff or a quarterly analysis
of an organization’s customers may identify those
who are churn risks and should receive sales calls. In
these kinds of applications, the output of a machine
learning technique is an input to another application,
and machine learning is thus a separate workload
(often logically and physically) from application
workloads.

1See Gama et al. (2014) for a recent survey of concept drift.
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In other applications, models provide auxiliary
functionality (e.g., printing personalized coupons
based on a model of a retail customer’s behavior)
and are periodically trained, operationalized, and
deployed into an application along with services
to clean raw data, extract features, and make a
prediction. In these applications, machine learning
is again a separate workload, although the scoring
pipeline may be ultimately incorporated into an
application.

Intelligent applications also use machine learning to
solve problems and derive business value. However,
intelligent applications are different from these other
approaches in several ways:

1) Intelligent applications are different in what
they use machine learning for: intelligent appli-
cations employ machine learning models to
support essential functionality and are thus
able to provide improved performance with
longevity and popularity.

2) Intelligent applications are different in how
they are developed, namely, by cross-functional
teams including data engineers (who make
data available at scale), machine learning prac-
titioners (who develop techniques to exploit
patterns in data), and conventional developers
(who build systems that depend on the data
and machine learning techniques).

3) Finally, and most importantly, intelligent appli-
cations are different in how they are deployed: be-
cause it is essential to intelligent applications,
machine learning is not a separate workload for
them. Many of the challenges of machine learn-
ing systems are consequences of introducing
opaque machine learning models and brittle
glue code into a distributed application that
would be difficult to manage even without
machine learning; we can ameliorate these
challenges to some extent if it is possible to
manage all of the components of intelligent
applications in a single control plane.

Each of these differences has consequences for
how intelligent applications are designed, how they
are built, and how they are deployed. Since machine
learning supports essential application functionality,
intelligent applications must continuously monitor
data quality and model performance, retraining
models when necessary. (An application in which a
model provides periodic inputs to an application or
in which a model supports auxiliary functionality
can monitor model performance less regularly.)

Since intelligent applications are developed by cross-
functional teams, application infrastructure that
supports collaboration is important. Since intelligent
application development involves a traditional soft-
ware development workflow and a machine learning
workflow (like the one of Figure 1) in parallel,
it also requires application infrastructure that can
support both. Finally, since many of the challenges
of machine learning systems are challenges of inte-
gration, management, and monitoring, intelligent
applications benefit from mature infrastructure for
distributed systems.

Architecture and responsibilities

An intelligent application federates data from mul-
tiple sources, including data in motion, structured
data at rest (e.g., in databases), and unstructured
data at rest (e.g., in file or object storage).

These data are then processed, transformed, and
cleaned. Data for which ground truth is available
are labeled to serve as part of a training set, which
is further processed to extract features and passed
to a model training algorithm, which deploys a
standalone model service.2 Raw data, which the
application must act on, are similarly cleaned and
processed before being scored by a trained model;
all cleaned data are saved to archival storage (yes-
terday’s raw data plus today’s ground truth can be
tomorrow’s training data).

Conventional application components, like end-
user interfaces, consume data and predictions and
use traditional business logic to act on them. Every
application component and data source produces
metrics, which drive reporting dashboards and
automated alerts (when it is possible to detect
application crashes, concept drift, or data quality
issues). Finally, a specialized management interface
allows operators to scale and manage the application
and a development interface allows data scientists
to experiment in a replica of the live application
environment or debug problems in production.
Figure 2 depicts this architecture.

Intelligent applications are interesting commercially
because most of today’s most compelling and lucra-
tive applications rely on machine learning to provide
essential functionality in a complex system;socially
because the lifecycles of these systems involve a
cross-functional team with a range of skillsets; and

2For some kinds of models, it may make more sense to publish
model parameters to stable storage or an in-memory cache for
another service to load.
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Fig. 2. An idealized intelligent-application architecture.

technically because machine learning systems present
many engineering challenges.

The commercial aspect implies that developer
velocity is at a premium while developing intelligent
applications. The social aspect involves effectively
building a cohesive system that depends on the
talents of a diverse team even though software
systems typically reflect the structure of the teams
that build them (Conway, 1968). The technical aspect
subsists in the challenge of managing, monitoring,
and isolating a complex system with at least one
opaque box in the middle – since there are so
many places in which machine learning systems
can go wrong, we need a single place to manage
and observe the behavior of every component and
their interactions.

IV. KUBERNETES AND INTELLIGENT APPLICATIONS

Sculley et al. (2015) showed that machine learning
systems present new challenges but, paradoxically,
that much of the engineering effort involved in de-
veloping and maintaining machine learning systems
is not really specific to machine learning. Issues like
data integration, process scheduling, configuration
management, and resource management apply to
nearly all substantial applications. Thus, the tech-
nical challenges of machine learning systems are
largely general distributed-application challenges,
and these can be largely addressed by managing
machine learning systems in a single place as
intelligent applications. In addition, choosing the
right place to manage these applications will make
it easier to solve the aforementioned commercial
and social challenges as well.

The idea that it is desirable to manage as many
components as possible of a data-processing or
machine-learning systems under a single control

plane is not new: pockets of industry have seen
brief, intense, and ultimately unsuccessful attempts
to generalize and repurpose specialized schedulers
and infrastructure (e.g., trying to run low-latency
streaming applications on a batch scheduler built
on a distributed storage system). This section will
introduce Kubernetes (Burns et al., 2016), a resource
manager that is suitable for application develop-
ment and deployment, the compute and storage
workloads that machine learning systems depend
on, and thus entire intelligent applications.

Kubernetes runs services and jobs in Linux contain-
ers (Soltesz et al., 2007), which provide a lightweight
isolation mechanism (in order to protect services
from other processes that might be running on the
same host). Since an important part of isolation
is ensuring that unrelated services cannot access
the same files, container runtimes also provide
support for creating immutable filesystem images
that package application code with the libraries it
requires. These images are an increasingly important
distribution mechanism for open-source and propri-
etary software alike. More complex distributed ap-
plications are typically developed on Kubernetes in
a microservice architecture, which incorporates several
stateless processes, each running in a container and
communicating with its peers via message passing.3

Microservice architectures have several technical
benefits, which we will discuss. However, the social
benefits of microservice architectures are also inter-
esting in the context of the teams that build machine
learning systems. By focusing on microservices,
small subteams are freed to focus on narrower
spheres of responsibility and merely need to satisfy
interface contracts for their services to work with
the rest of the system.

The first and most important advantage of Ku-
bernetes for intelligent applications and machine
learning systems is the concept of declarative de-
ployments: a user publishes an application for Ku-
bernetes not by providing steps in a recipe to
execute, but by describing the services that will
comprise the system, the resources they will need,
and how they are connected to one another. As a
consequence, Kubernetes itself is able to ensure that
a deployment is as expected and change the state of
the system to correct any errors or failures. These
deployments also make systems reproducible and
portable: the same deployment specification can run

3See Dragoni et al. (2017) for a survey of microservice archi-
tectures.
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on a Kubernetes cluster on a personal workstation,
inside a corporate datacenter, or on any public cloud
infrastructure.

A crucial difference between Kubernetes and
classic HPC schedulers is that Kubernetes provides
the primitives to support a productive developer
experience. Stateless container architectures enable
continuous integration, in which an application can
be tested in isolation in an exact replica of the
production environment after each code change
is committed to source control, and continuous
deployment, in which builds that pass integration
testing are automatically pushed out to the produc-
tion environment and transparently replace older
versions. A more sophisticated deployment strategy,
called blue-green deployments routes some requests or
sessions to the new version of the application and
the remainder of requests to the old version, shifting
the proportion over time to send more requests
to the new version if no errors are observed and
enabling upgrades without downtime (and speedy
rollback if necessary).

These automated testing and deployment advan-
tages apply to conventional applications and also
to machine learning systems. The predictive compo-
nents of intelligent applications are also services that
must be built, tested, and deployed, and production
model training pipelines can be implemented us-
ing the machinery of application build pipelines.
Because models can fail silently, we need to be
able to route prediction requests to older versions if
we observe degraded application performance after
installing a new model, just as we need to be able
to roll back a misbehaving microservice that passes
tests but crashes in production.

Data scientists can benefit from the same user
experience that Kubernetes presents to application
developers. In particular, data scientists often use
interactive notebook software (Kluyver et al., 2016),
which combines code, documentation, execution,
and output in a single document. The promise of
notebooks is to support development, communi-
cation, and reproducible research, but the latter
is only realized with a disciplined data scientist,
since a notebook’s results may depend on details of
the user’s environment. By publishing container
images with notebooks and dependencies, data
scientists can ensure truly reproducible research. By
specifying their requirements as part of a declarative
deployment, it is possible to establish a predictable

research environment on any infrastructure.4

It is even possible to use continuous integration
and deployment tooling to automatically transform
notebooks that define a machine learning pipeline
into production services.5 By supporting tooling to
translate directly from a data scientist’s preferred en-
vironment to a production-ready service, continuous
integration tooling can dramatically increase the ve-
locity of development teams; in a traditional model,
data scientists use notebooks as a communication
tool addressed to developers who reimplement the
essential techniques as service endpoints. Manual
reimplementation adds time and human effort to
the process, but it also means that the quality of
model services is dependent on the discipline and
understanding of the developer; generating these
services automatically ensures that they will always
perform error-checking and input sanitization, and
that they will always publish model metrics, without
specific practitioner effort.

Monitoring and observability are challenges for
microservice systems and intelligent applications
alike, since one needs to understand the interactions
between components to even begin to understand
the behavior of a distributed system. The Kubernetes
ecosystem supports several log-aggregation services,
a time-series database for metrics data, and tooling
to visualize and trigger alerts based on log or metric
events. By tracking metrics about each stage of our
data pipelines and about our predictive models, we
can identify concept drift and related problems even
in situations where we don’t know the ground truth,
simply by identifying divergence in the distributions
of the metrics we’ve collected.

Finally, using a single control plane makes ma-
chine learning systems easier to manage: instead
of tracking metrics and quotas from separate com-
pute, storage, and application clusters, or instead
of defining three different scheduling policies in
three different languages on three different systems,
we can manage every component in Kubernetes.
Kubernetes was designed to manage conventional
web applications, but it has proven flexible enough
to manage scale-out analytic processing workloads
like Apache Spark (Zaharia et al., 2016), tightly-
coupled HPC-style parallel compute workloads
(Sergeev and Del Balso, 2018), and a variety of
scalable storage and messaging systems.

4See mybinder.org for such a service built on Kubernetes.
5See https://github.com/willb/nachlass.

5

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/MS.2020.2985224

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://mybinder.org
https://github.com/willb/nachlass


V. SYSTEMS AND USE CASES

In this paper, we have argued that many of the
challenges of machine learning systems are more
tractable when you structure them as intelligent
applications on a flexible platform like Kubernetes.
Part of the evidence for this argument lives outside
this paper: it is real systems and applications that
ultimately show that Kubernetes is suitable for
machine learning systems. Case studies of machine
learning systems on Kubernetes are regularly de-
scribed at industry conferences. As a recent example,
there was a special track devoted to operationalizing
machine learning at the Open Source Conference
in 2019 (O’Reilly and Associates, 2019); speakers
described numerous machine learning systems on
Kubernetes, including use cases in finance, devel-
oper infrastructure, and broadcast media.

The radanalytics.io community has developed
several projects to aid developing and deploying
intelligent applications on Kubernetes, including
tooling to deploy an application along with a Spark
cluster specific to that application as part of a
continuous integration and build pipeline.

The Open Data Hub is an intelligent application
that provides an on-demand multitenant discovery
environment on Kubernetes, including storage, com-
pute, notebook hosting, and monitoring. The Valeria
system developed at Université Laval also provides
a similar discovery environment on Kubernetes.

The Kubeflow project provides tooling to make
machine learning workflows scalable and repeatable
on Kubernetes, including notebook environments,
experiment management, “auto-ML” functionality
(Zhou et al., 2019), and more.
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