Machine learning and
discovery with Kubernetes

William Benton ¢ @willb * willb@redhat.com

What do machine learning

workflows look like?

Will Benton

@willb #SEMLA19

@willb #SEMLAI19

@willb #SEMLAI19

@willb #SEMLAI19

]

=k
<
i
=
L
v
H
2
3
®

@willb #SEMLA19

@willb #SEMLA19

codifying problem data collection

and metrics and cleaning

@willb #SEMLA19

data collection feature

model training

and tuning

and cleaning engineering

@willb #SEMLA19

data collection feature

model training

and tuning

and cleaning engineering

@willb #SEMLA19

model

feature model training
validation

engineering and tuning

@willb #SEMLA19

model

feature model training
validation

engineering and tuning

@willb #SEMLA19

model model

monitoring and

validation

validation deployment

@willb #SEMLA19

model model

monitoring and

validation

validation deployment

@willb #SEMLA19

codifying problem data collection feature model training model model monitoring and

and metrics and cleaning engineering and tuning validation deployment validation

@willb #SEMLA19

defining types
and interfaces

prototyping

@willb #SEMLA19

unit, behavioral, and formal
integration testing verification

@willb #SEMLA19

codifying problem data collection feature model training model model monitoring and

and metrics and cleaning engineering and tuning validation deployment validation

deployment

@willb #SEMLA19

+ < €A ¢ ¥ MRun B C » Markdown -

Bloom filter 9

hl(u

foo")

h2("

foo")

e

h3(u

foo")

hl(u

bar")

/

hZ("

bar")

h3(u

bar")

A conventional hash table (or hash table-backed set structure) consists of a series of buckets. Hash
table insert looks like this:

1.
2.

First, use the hash value of the key to identify the index of the bucket that should contain it.
If the bucket is empty, update the bucket to contain the key and value (with a trivial value in the

case of a hashed set).

If the bucket is not empty and the key stored in it is not the one you've hashed, handle this

hash collision. There are several strategies to handle hash collisions precisely; most involve

extra lookups (e.g., having a second hash function or going to the next available bucket) or

+ < €A ¢ ¥ MRun B C » Markdown -

Bloom filter 9

hl(u

foo")

h2("

foo")

e

h3(u

foo")

hl(u

bar")

/

hZ("

bar")

h3(u

bar")

A conventional hash table (or hash table-backed set structure) consists of a series of buckets. Hash
table insert looks like this:

1.
2.

First, use the hash value of the key to identify the index of the bucket that should contain it.
If the bucket is empty, update the bucket to contain the key and value (with a trivial value in the

case of a hashed set).

If the bucket is not empty and the key stored in it is not the one you've hashed, handle this

hash collision. There are several strategies to handle hash collisions precisely; most involve

extra lookups (e.g., having a second hash function or going to the next available bucket) or

What’s a container?

@willb #SEMLA19

%pilp 1nstall numpy

@willb #SEMLA19

executable WAVESYAER VA kN
Sl GCLHISEE pip install numpy

VIR LANG=en_US USER=willb ...

@willb #SEMLA19

executable

arguments

environment

EEEEEEEEEEEEEEEEEEEE
virtual memory "o mEEmEmEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEE

file handles

process table

network routes

@willb #SEMLA19

@willb #SEMLA19

@willb #SEMLA19

process table - - - - - - - -
network routes NN NN IS

@willb #SEMLA19

root filesystem /var/lib/envs/main

process table - -
network routes -

@willb #SEMLA19

root filesystem /var/lib/envs/main

process table - -
network routes -

@willb #SEMLAI19

Immutable images

@willb #SEMLA19

configuration and
installation recipes

abafd9le
6b8cad3e

33721112
e8cae4ib
2bb6ablé
a8296f e

979229b9

Stateless microservices

@willb #SEMLAI19

Stateless microservices

@willb #SEMLAI19

Stateless microservices

@willb #SEMLA19

Stateless microservices

@willb #SEMLA19

Stateless microservices

@willb #SEMLAI19

Stateless microservices

@willb #SEMLAI19

Stateless microservices

@willb #SEMLAI19

Stateless microservices

@willb #SEMLAI19

Declarative app configuration

@willb #SEMLA19

Integration and deployment

Q git 0

Integration and deployment

configuration and
installation recipes

base image

@willb #SEMLA19

Integration and deployment

configuration and
installation recipes

base image

@willb #SEMLA19

Integration and deployment

configuration and

installation recipes l

base image

@willb #SEMLA19

What containers offer
data scientists

@willb #SEMLA19

@willb #SEMLA19

@willb #SEMLA19

No friction: mybinder.org

- — <>
- i |4 / l
|i "' ||$

@willb #SEMLA19

More flexible: source-to-image

g

oIt

L4
L4
X4
L4
L4
X4
L4
L4

@willb #SEMLA19

More flexible: source-to-image

Ygit -~ 58 ¢

builder image application image

https://github.com/openshift/source-to-image

@willb #SEMLA19 & RedHat

willb@echo % oc new-app \

getwarped/s2i—minimal-notebook: latest~https://github.com/willb/probabilistic-structu
res \

—e JUPYTER_NOTEBOOK_PASSWORD=developer|

willb@echo % oc new-app \

getwarped/s2i—minimal-notebook: latest~https://github.com/willb/probabilistic-structu
res \

—e JUPYTER_NOTEBOOK_PASSWORD=developer|

@willb #SEMLA19

@willb #SEMLAI19

willb@echo % oc new—app ——name model \
quay.io/willbenton/simple-model-s2i:demo\
~https://github.com/willb/example—-model-s2i—-notebook

willb@echo % oc new—app ——name model \
quay.io/willbenton/simple-model-s2i:demo\
~https://github.com/willb/example—-model-s2i—-notebook

|
||
L4

4

~—
L

I
|
I
I
L4
L4
I
|
I
I

L4
L4
X4
L4
L4

@willb #SEMLAI19

@willb #SEMLA19

@willb #SEMLA19

(joint) distribution of input data

distribution of predictions:

distribution of acyclic paths
taken through scoring code?

@willb #SEMLAI19 & RedHat

@willb #SEMLA19

Where from here?

data engineers application developers

developer Ul

file, object :
= —

data scientists

@willb #SEMLA19

data engineers application developers

developer Ul

=1 N 0] d 1 | B —— federate

databases -l—>

storage

|
|
|
|
|
|
]]
— = _
] | | — - —
d I EEEEEEEEEEEEEEEEEEEEEEEEER] ! _ e S —_— - D —
~ T —_—— — _
4 — e —
/’/
y
A /
V
F

Models | r— ' management

machine learning engineers

data scientists
@willb #SEMLA19

radanalytics.io

@willb #SEMLAI19

opendatahub.io

@3 :° ¢

@willb #SEMLAI19

Kubeflow

— Jupyter
O PyTorch

@willb #SEMLA19

What did we talk about today?

codifying problem LEVERETAT feature model training
and metrics and cleaning engineering and tuning

model model monitoring and
validation deployment validation

@willb #SEMLAI19

codifying problem LEVERETAT feature model training
and metrics and cleaning engineering and tuning

model model monitoring and
validation deployment validation

arguments pip install numpy pip install riskylib

root filesystem WAEEYARLVLLIEVAERR /var/11b/envs/r15ky

process table - -
network routes _ _

@willb #SEMLA19

codifying problem LEVERETAT feature model training
and metrics and cleaning engineering and tuning
model model monitoring and
validation deployment validation

arguments pip install numpy pip install riskylib

root filesystem WAEEYARLVLLIEVAERR /var/11b/envs/r15ky

process table - -
network routes _ _

.
.
.

@willb #SEMLA19

codifying problem data collection feature model training
and metrics and cleaning engineering and tuning
model model monitoring and
validation deployment validation

| |

arguments pip install numpy pip install riskylib

root filesystem WAEEYARLVLLIEVAERR /var/lib/envs/risky

process table

network routes _

.
.
.
.
o

»

~_ ~_
@willb #SEMLA19

e

: willb@redhat.com @willb
= https://chapeau.freevariable.com

@willb #SEMLA19

