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What do machine learning

workflows look like?
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defining types
and interfaces

prototyping
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unit, behavioral, and formal
integration testing verification
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A conventional hash table (or hash table-backed set structure) consists of a series of buckets. Hash
table insert looks like this:

1.
2.

First, use the hash value of the key to identify the index of the bucket that should contain it.
If the bucket is empty, update the bucket to contain the key and value (with a trivial value in the

case of a hashed set).

If the bucket is not empty and the key stored in it is not the one you've hashed, handle this

hash collision. There are several strategies to handle hash collisions precisely; most involve

extra lookups (e.g., having a second hash function or going to the next available bucket) or
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What’s a container?
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%pilp 1nstall numpy
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executable WAVESYAER VA kN
Sl GCLHISEE pip install numpy

VIR LANG=en_US USER=willb ...
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executable

arguments

environment
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file handles

process table

network routes
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process table - - - - - - - -
network routes NN NN IS
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root filesystem /var/lib/envs/main

process table - -
network routes -
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root filesystem /var/lib/envs/main

process table - -
network routes -

@willb #SEMLAI19




Immutable images
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Stateless microservices
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Declarative app configuration

@willb #SEMLA19




Integration and deployment

Q git 0




Integration and deployment

configuration and
installation recipes

base image
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What containers offer
data scientists
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No friction: mybinder.org
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More flexible: source-to-image
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More flexible: source-to-image

Ygit -~ 58 ¢

builder image application image

https://github.com/openshift/source-to-image
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willb@echo % oc new-app \

getwarped/s2i—minimal-notebook: latest~https://github.com/willb/probabilistic-structu
res \

—e JUPYTER_NOTEBOOK_PASSWORD=developer|




willb@echo % oc new-app \

getwarped/s2i—minimal-notebook: latest~https://github.com/willb/probabilistic-structu
res \

—e JUPYTER_NOTEBOOK_PASSWORD=developer|
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willb@echo % oc new—app ——name model \
quay.io/willbenton/simple-model-s2i:demo\
~https://github.com/willb/example—-model-s2i—-notebook




willb@echo % oc new—app ——name model \
quay.io/willbenton/simple-model-s2i:demo\
~https://github.com/willb/example—-model-s2i—-notebook




|
||
L4

4

~—
L

I
|
I
I
L4
L4
I
|
I
I

L4
L4
X4
L4
L4

@willb #SEMLAI19




@willb #SEMLA19




@willb #SEMLA19




(joint) distribution of input data

distribution of predictions:

distribution of acyclic paths
taken through scoring code?
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Where from here?
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radanalytics.io
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opendatahub.io
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Kubeflow

— Jupyter
O PyTorch
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What did we talk about today?



codifying problem LEVERETAT feature model training
and metrics and cleaning engineering and tuning

model model monitoring and
validation deployment validation
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codifying problem LEVERETAT feature model training
and metrics and cleaning engineering and tuning

model model monitoring and
validation deployment validation

arguments pip install numpy pip install riskylib

root filesystem WAEEYARLVLLIEVAERR /var/11b/envs/r15ky

process table - -
network routes _ _
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codifying problem data collection feature model training
and metrics and cleaning engineering and tuning
model model monitoring and
validation deployment validation

| |

arguments pip install numpy pip install riskylib

root filesystem WAEEYARLVLLIEVAERR /var/lib/envs/risky

process table

network routes _
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